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Overview

This document provides arguments discussed in—though not included in—the manuscript.

SAR quantity of interest: effects of an unmodeled shock in the
outcome

Another quantity of interest from the SAR model explores how an unmodeled shock to the out-
come in observation i influences its neighbors through Equation 15 in the manuscript. In Fig-
ure A.1 we demonstrate how a 10-point increase in the Freedom House score for the Democratic
Republic of the Congo (DRC) in 1994 influences its first-order neighbors’ democracy levels. All
eight of its contiguous neighbors experience a positive spillover (statistically significant at the
90% confidence level), and the effects range from +0.23 for Tanzania and Zambia to +0.62 for
Burundi. Though each country in Figure A.1 is contiguous, the size of the effects vary as a re-
sult of the number of neighbors in the row-standardized weights matrix. For example, Burundi
experiences over twice the spillover that Zambia experiences, because the DRC is one of three
neighbors of Burundi, but one of eight neighbors for Zambia. Since spatial spillovers influence
each of the eight neighbors equally (due to the row-standardization), the positive spillover as a
result of the DRC’s democratic improvement will be smaller for those observations with more
neighbors.

Model comparison and the coefficient interpretation approach

For example, consider the analysis of welfare state size during the Cold War by Obinger and
Schmitt (2011) as an example of the perils of the coefficient interpretation approach. The au-
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Figure A.1: Spatial Diffusion Patterns Following a 10-point increase in the Freedom House score
for the Democratic Republic of the Congo

thors theorize that the reason for the drastic expansion of the welfare state in the Cold War was
the regime competition between those in the capitalist West and those in the communist Soviet
bloc (247). The authors theorize that three sets of connections between capitalist and commu-
nist states determine the degree of competition: all connections weighted equally, geographic
proximity (inverse distance between capitals), and economic size. They then estimate three SAR
models and three SLX models (with the spatial lags temporally lagged one year). Their interpre-
tation is limited to pointing out that the spatial coefficients are positive, as expected, and that
the coefficients for the control variables—such as economic growth and economic wealth—are
also signed in the expected direction (263). Unfortunately, this approach provides no sense
of the average effects due to positive spatial dependence, the average total effects, or which
countries’ connections are most meaningful. In short, the coefficient interpretation approach
neglects a litany of theoretically-interesting inferences.

The authors estimate three SAR models and three SLX models (each time changing the spec-
ification of a row-standardized weights matrix). They compare the coefficients across the SAR
and SLX models to conclude that the SLX models have a “more substantial effect for the regime
competition variable” (262). The authors then caution in a footnote immediately following that
comparison that “due to different estimation techniques the results cannot be strictly com-
pared. They can only indicate tendencies about the relative importance of particular effects”
(262). The authors are correct that in the coefficient interpretation approach comparing the co-
efficients is a fool’s errand. On the other hand, the general approach allows scholars to directly
compare the effect sizes across different spatial model specifications with the use of the partial
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derivative matrix.

Row-standardization illustration

A common strategy is to row-standardize the weights matrix. However, the row-standardization
process forces the average total effects to be the same; each observation is equally influenced
by other influences. Recall the example in the manuscript of four observations that are located
at points 0.5, 4.5, 5.5 and 7 on a single dimension. In the un-row-standardized version, the
elements of W capture the inverse absolute distance (W), or 1

abs(pa−pb ) . Row-standardizing the
matrix involves dividing each element by the row total. The resulting partial derivatives matrix
and total effects are shown in Equation 1.

W=


0 .41 .33 .25

.15 0 .61 .24

.11 .54 0 .36

.13 .33 .55 0

, (IN−ρW)−1β=


.501 .022 .019 .014
.008 .502 .031 .014
.006 .028 .503 .019
.007 .018 .029 .502

, T E=


.556
.556
.556
.556

 (1)

The result is that each observation has the same total effects.

Extensions

There are important extensions of the approach we outline here. The partial derivatives ap-
proach sheds light on how the effects of covariates change as a function of spatial location, or
the degree of spatial heterogeneity. Other approaches can deal with spatial heterogeneity, either
in a discrete (geographic regression discontinuity design, see Keele and Titiunik 2014 and Keele
et al. 2015 for examples) or continuous manner (geographically weighted regression, see Bruns-
don et al. 1996, Darmofal 2008, and Darmofal 2015 for examples). All of these approaches reveal
any underlying spatial heterogeneity in effects, whether it is through observation-specific pa-
rameters (GWR) or a global parameter that is weighted by spatial location (partial derivatives).
The latter approach is especially useful in the presence of continuous spatial heterogeneity and
has applications primarily in geographic-based connectivity, although it need not be limited in
that way.
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